How to succeed with hoverboards

This is a redirect from a title that potentially could be expanded into a new article or other type of associated page such as a new template. Also use R printworthy together with this template when used in mainspace. The topic described by this title may be more detailed than is currently provided on the target page or in a section of that page. When used on a template redirect, it will automatically populate Category:Template redirects with possibilities. When the target page becomes too large, or for any reason a new page would be an improvement, this redirect may be replaced with an article, template or other project page that is carved out of the target page.

Cockerell came across the key concept in his design when studying the ring of airflow when high-pressure air was blown into the annular area between two concentric tin cans, one coffee and the other from cat food and a hair dryer. This produced a ring of airflow, as expected, but he noticed an unexpected benefit as well; the sheet of fast moving air presented a sort of physical barrier to the air on either side of it. This effect, which he called the “momentum curtain”, could be used to trap high-pressure air in the area inside the curtain, producing a high-pressure plenum that earlier examples had to build up with considerably more airflow. In theory, only a small amount of active airflow would be needed to create lift and much less than a design that relied only on the momentum of the air to provide lift, like a helicopter. In terms of power, a hovercraft would only need between one quarter to one half of the power required by a helicopter.

Cockerell built several models of his hovercraft design in the early 1950s, featuring an engine mounted to blow from the front of the craft into a space below it, combining both lift and propulsion. He demonstrated the model flying over many Whitehall carpets in front of various government experts and ministers, and the design was subsequently put on the secret list. In spite of tireless efforts to arrange funding, no branch of the military was interested, as he later joked, “the navy said it was a plane not a boat; the air force said it was a boat not a plane; and the army was ‘plain not interested.'”[10] SR.N1

This lack of military interest meant that there was no reason to keep the concept secret, and it was declassified. Cockerell was finally able to convince the National Research Development Corporation to fund development of a full-scale model. In hoverboard pas cher , the NRDC placed a contract with Saunders-Roe for the development of what would become the SR.N1, short for “Saunders-Roe, Nautical 1”.

The SR.N1 was powered by a 450hp Alvis Leonides engine powering a vertical fan in the middle of the craft. In addition to providing the lift air, a portion of the airflow was bled off into two channels on either side of the craft, which could be directed to provide thrust. In normal operation this extra airflow was directed rearward for forward thrust, and blew over two large vertical rudders that provided directional control. For low-speed maneuverability, the extra thrust could be directed fore or aft, differentially for rotation.